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Rigorous Analysis of the Propagation Characteristics
of General Lossless and Lossy Multiconductor
Transmission Lines in Multilayered Media

Frank Olyslager, Student Member, IEEE, Daniél De Zutter, and Krist Blomme, Student Member, IEEE

Abstract— The frequency dependent propagation character-
istics of lossless and lossy open coupled polygonal conductor
transmission lines in a multilayered medium are determined
based on a rigorous full-wave analysis. A boundary integral
equation technique is used in conjunction with the method of
moments. Losses in conductors and layers are included in an
exact way without making use of a perturbation approach.
Dispersion curves for the complex propagation constants and
impedances are presented for a number of relevant examples and,
where possible, compared with published data.

I. INTRODUCTION

HE STRUCTURES analyzed in this paper consist of

coupled polygonal waveguides in a multilayered medium.
Though the theory is valid from pure dielectric to perfect
conducting waveguides we will restrict ourselves to polygonal
conductors. These conductors can be perfectly conducting or
have a finite conductivity. As no simplifying assumptions have
been introduced, our approach allows a rigorous study of skin
effect phenomena.

Polygonal transmission lines have already been studied by
a number of authors, however mostly restricted to the quasi-
TEM limit. In [1] a quasi-TEM analysis is presented of coupled
polygonal conductors in a layered medium. The authors use the
Green’s function of free space and the layered medium is taken
into account by polarization charges at the layer interfaces. In
[2] the same authors use a perturbation theory to include losses
in layers and conductors. In [3] the same kind of structures
were analysed in the quasi-TEM limit, however by means of
the Green’s function of the layered medium. Recently in [4] a
complex image technique was proposed to handle the layered
medium.

In [5] the rigorous full-wave analysis of open polygonal
conductors is limited to the case of perfectly conducting
conductors. The analysis is based on a mixed potential integral
equation technique in conjunction with the Green’s dyadic of
the layered medium. The authors study the behavior of the
propagation constants of the first and higher order modes in
the bound and leaky regime. The propagation constants and
impedances of perfectly conducting wire transmission lines
in multilayered media were determined in [6]. Some authors
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Fig. 1. Geometry of a general multiconductor transmission line.

have investigated the influence of finite thickness or losses of
microstrip structures with perturbation techniques, for example
in [71, [8].

To the authors knowledge this paper is the first rigorous
analysis for both the propagation constants and impedance ma-
trix of coupled polygonal transmission lines including losses
and without any perturbation approach. _

The general outline of the theory is developed for conduc-
tors with arbitrary cross-section. In the detailed calculations
however, it becomes necessary to assume polygonal cross-
sections. This assumption leads to considerable simplifications
as a number of integrations can be carried out analytically.

The eigenmodes propagated along the structures under study
are determined with a boundary integral equation technique.
This integral equation is an extension of the equation used in
[6]. The sources of the eigenmodes are the tangential electric
and magnetic field components at the conductor boundaries.
The integral equation is solved with the method of Galerkin.
The eigenvalues of this integral equation are the propagation
constants and the eigenvectors yield the modal fields. These
modal fields are used to calculate the propagated power. From
the propagated power we determine the impedance matrix.

II. GEOMETRY OF THE PROBLEM

Fig. 1 shows the geomeiry of the analyzed structures, There
are L layers and we will use the subscript ‘¢’ (¢ = 1,---, L)
to refer to the 7th layer. Each layer consists of homogeneous
and isotropic material characterised by an arbitrary relative
complex permittivity ¢, ; and complex permeability f;.
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A total number of C' conductors are embedded in the layered
medium and the subscript ‘5> (j = 1,---,C) refers to the
gth conductor. Because a conductor can be located in more
than one layer we use the notation C; to indicate the total
number of conductor parts in layer ¢ while the subscript ‘i’
(j =1,---,C;) refers to the jth conductor part in layer ¢.

Each conductor j consists of homogeneous and isotropic
material characterized by an arbitrary relative permittivity €, ;
and permeability g, ;. The permittivity is a complex number
and contains the conductivity o of the conductor. In many
cases one will deal with good conductors so that the real part
of e, can be neglected and that €, = o0/jweg. The case of
perfectly conducting conductors is found by making .. infinite.
The boundary of conductor j is denoted by c;. Note that
c;; is the boundary of conductor part j in layer i. n; is the
external normal to ¢; and r;(y, z) is the position vector in the
(y, z)-plane of a point on c¢;.

III. CONSTRUCTION OF THE INTEGRAL EQUATION

A. Introduction

The common time and longitudinal dependence e?(~t~5%)
in all field components, with w the pulsation and [ the
propagation constant, is omitted. We use the longitudinal field
components E,(r) and H,(r), with r = yu, + zu,, as basis
from which the other field components can be generated. The
sources which build up these longitudinal field components
are the tangential fields n; X F(r;) and n; x H(r;) at
the boundaries of the conductors. These tangential fields
consist of longitudinal contributions F, ;(r;) and H, ;(r;)
along the conductors and transversal contributions F; ;(r;)
and H, ;(r;) in the cross-section of the structure. The four
functions E, ;(r;), H ;j(r;), B+ j(r;) and H, ;(r;) along all
the conductor boundaries are the unknowns of the eigenmode
problem and will be referred to as the sources in the sequel.

We will make a distinction between the so-called internal
regions inside the conductors and the so-called external regions
outside the conductors. The fields in both the external and
internal regions are expressed as a function of the sources at
the conductor boundaries. The fields in the external regions are
the sum of incoming fields and scattered fields. The incoming
fields are defined to be the fields generated by the sources if
the layer, in which these sources are located, fills up whole
space. These incoming fields however will reflect at the layer
interfaces and penetrate into the other layers. In this way the
scattered fields are generated. The incoming fields exist only
in the layer of the sources while the scattered fields exist in
all layers. The same partitioning of the fields was used in [6].
The internal and external regions are connected by imposing
appropriate boundary conditions between the field expressions
in both regions. This results in the final integral equation.

B. Internal Regions

Consider the internal region of conductor j shown in
Fig. 2(a). From elementary electromagnetics it is known that
the longitudinal fields in a homogeneous space are solution to
the Helmholtz equation. From this fact, using Green’s identity,
it can be shown that the total longitudinal fields inside the
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Internal region of conductor j (Fig. 2(a)) and external region in
layer ¢ around conductor part ¢; (Fig. 2(b)).

Fig. 2.

conductor can be expressed as a contour integral along the
boundary c;:

B, j(r) = Ey(r)
| G, (r|r") OE, ;(r)
= ij Em,](T;)T;J — GJ(’I' T;)T;] dCI
H, i(r) = H(r)
[ G (r|r’) O0H, ;(r")
= }{j sz(r;)———an;—] - Gj(r[r;-)Tn;J— dc’.
¢9)

Because these total fields are analogous to the external incom-
ing fields (2) discussed in the next subsection we explicitely
introduced the superscript ‘in’ in (1). This will simplify
the subsequent discussion. G,(r}r’) is the two-dimensional
Green’s function of homogeneous space filled with the ma-
terial of the conductor. From the knowledge of E, ;, H, ; and
their normal derivatives at the boundary c; we can calculate
E.; and H, ; everywhere inside the conductor.

C. External Regions

Now consider layer ¢ in which some conductor parts are
located (Fig. 2(b)). First we concentrate on conductor part 4;.
The incoming fields generated in layer ¢ by this conductor
part are given by

By (r) =

[ 8G;(rlr},) L OB (m )]
—]i i (T4, o Gi(TlTij)-Tn;j‘— de
0y (r) =

[ [ Gi(r|r;
— H. . (rl ) ———— %7
.. z,15 (sz) an' ‘

i Z:

Hzl /
T = Gy(r|ri, )—————J( )} dc’

@

Gi(r|r’) now represents the Green’s function corresponding
to layer 7. Remark that the signs in front of the integrals in
(2) and (1) are different because the normal vector n is now
pointing inward relative to the external region. The incoming
fields will generate scattered fields in all layers of the structure.
Now we can write down the total fields in each layer i:

C
Eai(r) = Z B, (r) + Z E35(r)
J;
Hyi(r) = HZ (r) Z HZ 3)
j=1
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where E3° (r) and H;¢;(r) are the scattered fields generated in
the layered structure by all the conductor parts of conductor
j. If there are no conductor parts in layer ¢, the total fields
in this layer will only consist of scattered fields due to the
conductors in the other layers.

D. Boundary Conditions and Unknown Sources

In the previous two sections it was demonstrated that it is
sufficient to know the longitudinal field components and their
normal derivatives at the conductor boundaries to know the
electromagnetic fields everywhere. This suggests the use of
E.(r;),Hy(r;),0E.(r;)/On and 0H.(r;)/On as basic un-
knowns in the eigenmode problem. However 0F,(r;)/0n and
0H,(r,;)/0n are not suitable because they are not continuous
and take different values at the inside and outside of the
conductor boundaries.

To solve this problem we closely examine the continuity
relations at the conductor boundaries. A first set of boundary
conditions are the continuity of the longitudinal field com-
ponents E, and H,. Secondly we have the continuity of
the tangential field components E: and H, in the transverse
(y. z)-plane.

In the local tangent coordinate system to curve c¢ of Fig.
2(a) we can express F, and H; as a function of derivatives
of E, and H:

by _ _JBOB, _ juudH,
T2 et ~2  On
i3 0H, jwedE,
Hy =027 e 4
K ¥ Ot ~v2 On @

with v2 = w?ep — 52

Equation (4), which can be derived from Maxwell’s equa-
tions, gives us expressions for the normal derivatives as a
function of continuous quantities. Note in this respect that
the continuity of F, and H, at the boundaries implies the
continuity of their tangential derivatives. Consequently we will
use Iy, Hy, OF, /0t and OH,, /Ot as basic unknowns instead of
OE, /8n and 8H, /On. If the functions E, and H, are known
at the boundaries then dE,, /9t and H,, /Ot are also known by
derivation along the boundary. Hence no new unknowns are
introduced by these derivatives and the final set of unknown
functions is E, H,, E; and H; at the boundaries.

Replacing the normal derivatives of the fields in (1), using
(4). results in

in oG
B = § | By
77 8 0H,,
—Gi (we] Hy,j - e 3t'-])} de!
J 7 ]
in 8GJ
H(r) = f} [HTJW

P i 2
.77] R /B aE{tJ
_G_] ( wu,] Et,] + w‘ 'U,J 6“t;

and an analogous replacement can be performed in (2).

dc’

&)

E. Final Set of Integral Equations

The integral equations are constructed by connecting the
internal and external regions. This means that we impose the
continuity relations between the total fields at the outside and
the total fields at the inside of the conductor boundaries. As
explained in the previous subsection, it is sufficient to impose
the continuity of the longitudinal components E, and H, and
the tangential transversal components FE; and Hy:

C,
> 8, 0+ LB 0
o | =1

= lim E,(r)
T<T,,

lim
r>T

lim
r>T,,

zH;z 0+ 3

H 2o(r)

= lim
r<T,,

C, ) C
Y EL M)+ BT
]“1 7=1

= lim E{& (r)
r<r.,

lim Z H (r)+ Z H(r

r>r’bo J =1

= lim H\(r)
T,

lim
T>T,,

Zo=1,'--,Cz i=1,---,L,

(6)

where r;_ is a position vector located on the oth conductor
part in layer . The subscript ‘o’ in the incoming fields at
the right hand side refers to the conductor to which conductor
part ‘4, belongs. The limiting operation at the left hand side is
performed from the external region to the conductor boundary
as indicated by the notation ‘r;no’ and the operation at
the right hand side is performed from the internal region is
indicated by the notation "rZrio . In the last two equations of
(6) the tangential transversal fields (index ¢) are determined
from their longitudinal counterparts (index x) by applying
(4). The integral equations (6) consist of four continuity
relations between E(r) and H(r) in four unknown functions
E.(r;), Hy(r;), E¢(r;) and Hy(r;). These unknowns are de-
fined over the total boundary of all conductors j,5 = 1,---,C.

In the case of a perfect conductor we have that Ew('r]) =
E,(r;) = 0, or that only two unknown functions H(r,) and
Hy(r;) do not vanish at the perfectly conducting boundaries.
At these boundaries we can only impose two conditions:
Ew(r;'rj) = Et('r;'rj) = 0. This means that (6) reduces
to a set of two equations with two unknown functions.

IV. SOLUTION OF THE INTEGRAL EQUATION

A. Basis Functions and Test Functions

The integral equation (6) is solved with Galerkin’s method.
The basis and test functions in the moment method of Galerkin
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are chosen in a natural way. We first concentrate on the basis
functions. For H, we use a piecewise linear representation and
for H, we use a piecewise constant representation. If we look
at the first equation of (5) we see a term proportional to H;
and a term proportional to O0H,/Ot. When H, is piecewise
linear, OH, /0t will be piecewise constant; so it would not
make much sense to use a higher order representation for H;.
In the case of a perfect conductor H, and H, are equal to
the surface currents on the conductor. In [5] the same choice
of basis functions is used for the representation of the surface
current. By analogy we use a piecewise linear representation
for FE, and a piecewise constant representation for E,.

As test functions in the method of Galerkin we use piece-
wise constant functions for F, and H, and piecewise linear
functions for E; and H:. This choice of basis and test functions
results in a very elegant and consistent development of the
theory. We will come back to this point in the sequel.

The boundary of each conductor is divided into a number of
segments with not necessary equal length. For the piecewise
constant representation we use pulse functions p(7) where 7
is the arc length:

pr)=5 0<7<8 )
Overlapping triangular functions ¢(7) (see Fig. 4(a)) are used
for the piecewise linear representation;

t(r)zl—l—(sl -6 <7<0
1
—1-L  0<7<6 @)

2

The total number of segments on all conductor boundaries
is equal to N.pg(r)7 € [0,6;](k = 1,---,N) denotes the
kth pulse function and £ (7)1 € [—61%,021](k =1,---,N)
denotes the kth triangular function.

The segment on a conductor corresponding to a specific
basis function will be called excitation segment. A segment
corresponding to a specific test function will be called ob-
servation segment. So each segment is sometimes seen as an
excitation segment and sometimes as an observation segment
depending on the context.

B. Discrete Eigenvalue Problem

If the total number of segments on all conductors is equal
to N, our integral equation is discretised in a set of 4N
homogeneous linear equations, each corresponding to a test
function, with 4N unknown amplitudes of the basis functions
shown in (9) at the bottom of the page. FEy i, Hyr, Ep
and Hyp(k = 1,---,N) are the unknown amplitudes of
the basis functions in the representation of E,, H,, F; and
H. [ XY (k1 =1,---,N; XY = E,,H,,Fy, H;) is the
X boundary condition tested at the kth observation segment
and generated by the basis function of the field component Y at
the Ith excitation segment. So [XY];; contains an integration
over the [th excitation segment and over the kth observation
segment. Comparison of (6) and (9) shows that [XY]s is
formed by the difference of an internal and external part and
that this external part consists of an incoming and scattered
contribution.

Each coefficient [X Yk in (9) is a nonlinear function of the
propagation constant 3. (9) will only have nontrival solutions
if the determinant of the system matrix vanishes. This determi-
nant is a function of § and will become zero for some discrete
values of [. These values correspond to the propagation
constants of the eigenmodes and the corresponding solutions
or eigenvectors of (9) are the eigenmode field components at
the conductor boundaries.

C. The System Matrix

1. Space Domain: In this section we will give explicit
expressions for the excitation and observation integration
appearing in each coefficient of the system matrix. First the
observation integration over the test function is examined
followed by the excitation integration.

Each coefficient of type [E,Y |, with Y = E,, By, H, or
Hy, contains a test integration of E, over the kth segment.
This integration takes the form:

Sk
/0 pr(v) Ba(r(v)) dv

where E,(r) is the longitudinal electric field generated by
the I/th basis function of field component Y. E,(r) can be an

(10)

i [EwEw]ll [Ea:EmllN [Ea:Ht]ll [E.nHt]lN 17 z,1 T '0'
[ExEz]n1 [E-E:]lnn [E.Hin1 [E.Hynn | | Fan 0
[HeE2]11 [HyEy)in [HyHil11 [HoHi1in H, 0
[HoEg|n1 [HzE:)nnN [HH:in1 [(HoHinw | | Hen _ 1|0 ©)
[ErEL]11 [ErEL1n [EyHila [EeHiin E:q 0"
[E:Ez]N1 [EvEL)Nn [EcHe N1 [E:Hi NN | | Een 0
[H:E )11 [HiEz)in (HeHyl11 [H:H 1~ H;, 0
| [H.E.]m [H.Ex|nn [H Hy]w1 (HHyy ) LH, ] L9
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incoming or scattered field. The expression for [H,Y ]k is
analogous to (10).

[E Y] on the other hand contains an integration of the
form:

Sk,2
/ te(v) Ee(r(v)) dv. 11)

—&k,1
The transversal tangential field E;(r) has to be expressed in
function of the basic field quantities using (4):

[ ) [ALOB) GO g,

2 ot ~2 on (12)

—8k1
[H:Y]x: is again analogous to (12).

[XEy )k, with X = E,, Ey, H,, or Hy, contains an integra-
tion over the /th basis function of the representation of E,.
The integrations associated with [X E, ]z are

51y2 !
Er) = /_ 5 tl(u)—aG(g:,(T))dT (13)
or:
81,2
H;n(r)=_u% N dt;f)a(ﬂr'(f))df (14)

as can be verified directly from (5). Analogous expressions
hold for [X H,]x;. From (5) one sees that [X Ey]i; has only
a magnetic contribution:

‘2 o1

Hogr) = 0 / n(@ Gl (M) dr (15
wp Jo

And finally [X H,]s; is again analogous to (15).

2. Spectral Domain: The Hankel function in the Green’s
function G(r|r') = j /4H(§2)('y|r‘— r’|) and her derivatives
appearing in (13)—(15) make the basis function integration
difficult. This problem can be solved if we spatially Fourier
transform the expressions (13)—(15) and calculate the spec-
tral longitudinal incoming fields. Interchanging the Fourier
transform with the excitation integration and possible normal
derivatives (appearing in (13)) leads us to the Fourier trans-
form of the Green’s function. This Fourier transform is given
by ([9] page 360):

1 +ooG(r|'r')e’kyyd
21 J_ o Y
1 etk o~ Tlz—21 T

=~ T ['=\/kj—~* (16)
The y-direction is indicated on Fig. 1. This spectral Green’s
function allows us to perform the integration over the basis
function analytically if the excitation segment is a straight line.
The spectral incoming fields are also needed in the calculation
of the scattered fields.

The space domain fields appearing in the test integrations
(10) and (12) are found by inverse Fourier transforming
the incoming or scattered spectral fields. We will however
first bring the inverse Fourier transform outside the test
function integration by interchanging both integrations. This
makes it possible to perform also the test function integration
analytically if the observation segment is a straight line

A

observation

1 observation segment

segment excitation

excitation segment

segment g

y

(@) b

Fig. 3. Observation and excitation segment with overlapping z coordinates in
the (y, #) coordinate system (Fig. 3(a)) and without overlapping % coordinates
in the new (g, Z) coordinate system (Fig. 3(b)).

and only the final inverse Fourier transform remains to be
integrated numerically. Remark that we use this spectral
technique even for internal regions with finite dimensions.

D. Incoming Coefficients

Even after applying the spectral domain technique the
basis and test integrations can become pretty complicated.
This is due to the absolute value of |z — 2/| appearing in
the spectral Green’s function (16). Consider a typical basis
function integration over an excitation segment. If we need
the spectral incoming fields at a z coordinate above or under
the excitation segment there is no problem because (z—z’) has
a fixed sign. However if we need the spectral incoming field
at a z coordinate at the height of the excitation segment we
have to divide the basis function integration in two parts: one
with [z — 2/| = (2 — 2’} and one with |z — 2| = —(z — 2'). At
the observation segment we integrate over z. This means that
if the observation and excitation segment have overlapping z-
coordinates, as shown in Fig. 3(a), we have to divide both
integrations in several parts. In region I (z — 2’) is positive,
in region III (z — 2’) is negative and in region II (z — z’) can
have both signs and the basis and test integrations are coupled.
However, this problem can be solved in an elegant way.

The incoming fields are fields generated in a homogeneous
space of infinite extend, so there is no preferential spectral
transformation direction imposed by the layered medium. If
we use the new coordinate system (g, Z) of Fig. 3(b) and if we
Fourier transform along the new ¢ direction this partitioning
in zones is no longer necessary because (Z — £’) is always
positive. A problem case occurs when the basis and test
function coincide i.e. the so-called self-patch contribution. This
problem can only be solved for polygonal waveguides in which
case the § axes is taken to be along the straight segment and
(¢ — #') is equal to zero. In the further calculation we will
always use the standard (v, z) coordinate system, but for the
incoming coefficients this system is assumed to be the (¢, %)
coordinate system.

E. Scattered Coefficients

As will be shown in the next section the spectral longitudinal
incoming fields consist of terms of the following general form:

E(ky,2) = e(ky)e™"

HP(ky, 2) = hE(ky)et"=. (17)
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Fig. 4. Polygonal conductor (Fig. 4(a)) with its boundary divided in seg-
ments. Notations to handle pulse functions (Fig. 4(b)) and triangular functions
(Fig. 4(c)).

In the spectral domain the layered medium can be seen as
a TE and TM cascade of transmission lines. The incoming
fields (17), after decomposition in TE and TM components, are
represented as voltage and current sources in these cascades.
Solution of the cascades with a matrix formalism described in
[10] results in the TE and TM components of the scattered
fields. After combination of both components, the spectral
longitudinal scattered fields in each layer can be written in
the following general form:

E;c(kya z) = é+(ky)erz + é_(ky)e_rz

H3o(ky, 2) = I¥ (ky)e™ + b~ (ky)e™* (18)

The solution of the cascades, i.e. the relation between
e (k,), ht(k,) and et (k,), h*(k,), has to be determined
only once for each excitation-observation layer combination
and not for each excition-observation segment combination.
This means that the calculation time for scattered coefficients
is only slightly higher than for incoming coefficients.

V. BASIS AND TEST FUNCTION INTEGRATIONS

In the further development of the theory it is necessary
to assume conductors with polygonal cross-section. Fig. 4(a)
represents a polygonal conductor with its boundary divided in
segments. Corners of the boundary are always at the edges of
segments. Fig. 4(b) shows the notations used to handle pulse
basis and test functions. The triangular function case is shown
in Fig. 4(c). Two angles «; and a9 are introduced because a
triangular segment can be across a corner of a conductor.

We start with the basis function integration, in other words
we determine the spectral longitudinal incoming fields gen-
erated by each basis function. This means that the Fourier
transforms in (13)—(15) are calculated. We will use the con-
ditions z > 2’ respectively z < 2z’, by this we mean that z
must be taken above respectively under all the 2’ coordinates
of the excitation segment.

We start with the contribution of a basis function for E,
to the longitudinal incoming magnetic field H"(k,, z). This

is the Fourier transform of (15). To simplify notations the
subscript ‘1, referring to a specific basis function, is omitted.
With the spectral Green’s function (16) and the pulse function
(7) one finds, when z > 2

j,.\/Ze—l"z

8
iky,y' Tz’

R — evd e dr
dnT pwé J,

H™ky,2) = (19)
with ¢ = yg + 7 cosa and z’ = zy + 7 sin a. Integrating (19)

yields:

j’72€_rz+m° (eét _ 1)

4n T pwbt 20)

Halcn(kyvz) =

with mg = jkyyo +1'20 and t = jk, cos a+1I'sin o. The case
when z < 2’ is analogous and is left to the reader.

Now we concentrate on the F, basis function contribution
(13) to E*(k,, 2). In this case we need the normal derivative
of the spectral Green’s function. For this we use the following
relations between the (¢,n) and (y, z) derivatives:

— = sin G — - COS (¥ =

on dy dz

g cos -+ si 2D
— = e - SiN .

a1 “oy ER

For z > 2z’ the Fourier transform of the normal derivative of
G is equal to

1 /+°° 6G(r|r')ejkyy dy = -2 eikuy —T(2=2")

2 an/ 4dr r @2)

— o0

where w = jky sina — ['cos a. Ei*(k,, z) with (22) and (8)

is given by
e—Fz 0 o ) , ,
1 L jkyy' Tz d
il {wl/_lSl ( + 61>6 e T

62 . 7 !
+ws / 1— L) ekt o0 gr | (23)
0 02

If we integrate by parts we finally find:

Eaion(kya Z) ==

. e~F2+m0 wq (8*51751 -1
B (ky,2) = = =15 { 5112
wae 1) wn_wa]
8212 ty to |

where ¢, and w- respectively 5 and wy correspond to ¢ and w
with « replaced by o respectively az. Note that for a straight
excitation segment, without a corner at 7 = 0,%; and w, are
respectively equal to ¢z and ws. This means that in this case
the last two terms in (24) cancel each other out. The z < 2/
case is again left to the reader.

The calculation of the other contributions to H.*(k,, z) and
E*(ky, z) are analogous.

The test function integration is needed to apply Galerkin’s
procedure. The test integration is completely analogous to
the procedure applied for the basis function integration after
interchanging the test integration and the inverse Fourier
transformation. For this reason we will not present an explicit
calculation of this integration.
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VI. INVERSE FOURIER TRANSFORMATION

The spectral integration is performed in the classical way
as described for example in [11]. For k, € [~k k.| we
use simple Gauss quadrature integration formulas along a
suitable complex integration path. The asymptotic part of the
integration, i.e. ky € [k.,+oo[ and k, €] — 00, —k.], allows
a special treatment. k. is taken high enough to ensure that
T’ can be approximated by |k,|. We will concentrate on the
positive part, k, € [k.,+oo[, of the asymptotic integration in
which I' = k,.

From (20) and (24) it can be seen that the scattered
longitudinal incoming fields contain only terms proportional
to

' e—aky

7 Re(a) Z 0. (25)

Yy

Note that the last two terms in (24) cancel out when we replace
I' by k,. The common spectral asymptotic character (25) of
all spectral longitudinal incoming fields is due to the special
choice of the basis functions. Note that one factor 1/k, is due
to the spectral Green’s function and one is due to the basis
function integration. The integration over the test function will
introduce an extra factor 1/k,. The fact that the test function
integration always results in an extra factor 1/k, is due to the
special choice of the test functions.

First we concentrate on the asymptotic part of the incoming
coefficients [XY];;7*° of the system matrix. From the above
it is clear that these coefficients are the sum of terms of the
following form:

e—aky C

. +oo
(XYL = C/k — k= 13 Es(ak.) Re(a) > 0.
e Yy c

(26)

With E3(z) the third order exponential integral ([9], p. 228).
The scattered coefficients [XY];7** also contain the 1/k3
spectral character due to basis and test function integration.

However due to the solution of the layered medium an extra

function f(k,) is introduced which describes the propagation

sc,as

and reflection in the layers. So [XY];;
sum of terms of the following form:

can be written as a

sc,as toeo e—aky
(XY™ = / fky)—z—dky Re(a) 20.  27)
k. Y

This integral can be evaluated with Gauss—Laguerre quadra-
ture.

VII. IMPEDANCES

The complete circuit model requires the impedance matrix
associated with the eigenmodi. In [12] this impedance matrix
is calculated from the mode current in each conductor, the
power propagated by cach eigenmode and the cross powers
between the eigenmodi. :

It was not necessary to make any assumptions about the
material parameters of the conductors for the calculation
of the propagation constant. In order to give a meaningful
interpretation to the total longitudinal current however, it is
necessary to assume that the displacement current is negligible

B/K, e results in [5)
o Static impedance

24— rrrrrrrrer et 17
0 20 40 60 80 100
frequency (GHz)

Fig. 5. Propagation constant and impedance as a function of frequency for
a thick microstrip (b = 0.635 mm, and w = 3.0 mm, ¢t = 0.3 mm,
& = 9.8,0 = ).

compared to the conduction current inside the conductors. The
sufficiently high conductivity makes it also possible to restrict
the power calculation to the layers and neglect the power
propagated in the conductors.

The total longitudinal current [; on conductor j(j =
1,---,C) is calculated from the contour integral of the
transversal tangential magnetic field H; around the conductor
surface because the displacement current in the conductor is
neglected.

Suppose ‘we want to calculate the cross-power Py, prop-
agated between mode f and mode g. This requires an in-
tegration of the x component of Poynting’s vector over the
cross-section of the waveguide. Using Parceval’s theorem we
can calculate Py, in the spectral domain:

+o00
Pry = [ (Bulhys2) 12, 0,2)

O

—E, 1(ky,2) H;’g(ky,z)] dz dk,. (28)

For source-less layers, i.e., layers without conductors, the
z-integration is calculated analytically.

In source layers things are more complicated. In principle it
is possible to perform the z-integration, even in source layers,
analytically. However this analytical integration results in very
tedious expressions which would require enormous amounts of
time to evaluate. Therefore we opted for a Gaussian quadrature
numerical integration to perform the z- integration.

VII. NUMERICAL EXAMPLES

A. Microstrip Configuration

As first example we consider a thick microstrip (see inset
of Fig. 5) with rectangular or trapezoidal cross-section on a
substrate with thickness A = 0.635 mm and relative dielectric
constant ¢, = 9.8. The thickness ¢ is one tenth of the top
width w = 3.0 mm of the strip.

Fig. 5 presents the propagation characteristics of a perfectly
conducting strip with rectangular (¢ = 90°) and trape-
zoidal (¢ = 45°) cross-section. The normalized propagation
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Fig. 6. Real and imaginary part of the propagation constant as a function of
frequency for the strip of Fig. 5 with ¢ = 100 kS/m.
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Fig. 7. Real and imaginary part of the impedance as a function of frequency
of the strip of Fig. 5 with ¢ = 100 kS/m.

constants are found to be in excellent agreement with the
results of Michalski and Zheng in [S]. We verified the low-
frequency limits of the impedances with results obtained by
our capacitance program described in [3].

In Figs. 6 and 7 the complex propagation constants’ re-
spective complex impedances are shown when the strip has
a conductivity ¢ = 100 kS/m. This corresponds to a bad
conductor worser than iron. As expected the attenuation con-
stant (= —Im(3)) decreases with increasing frequency as a
result of the skin effect. At low frequencies the real part of
the propagation constant shows a small dip (see enlargement
on Fig. 6). This increase of Re(8) with decreasing frequency
is a result of the fact that the fields start to penetrate deep
mnside the strip with high complex permittivity €, = o/jweg.
Indeed, at 1 GHz the skin depth is 50.3 pm and at 100 MHz
it has alréady increased to 159 pm which corresponds to
half the strip thickness. In this frequency range perturbation
techniques based on the skin effect are not applicable for
this example. Remark also that Re(3) becomes almost equal
to the propagation constant in the lossless case (Fig. 5) for
frequencies above 8 GHz. The unbound character of Im(53) /ko
at f =0 finds its origin in the factor f from ko = 27 f/€g 0.
The dispersion curves (Fig. 7) for the impedance show the

same properties as Fig. 6. ,

- We have divided the strip of Fig. 5 in two smaller perfectly
conducting strips (see inset of Fig. 8) with w = 1 mm

3.2 B/ky Z(Q)75
'] —— odd mode -’
] . 70
3]~ even mode __
1 4+—.- 65

2.8

0 20 40 60 80
frequency (GHz)

Fig. 8. Propagation constant and impedance as a function of frequency for
the even and odd mode of two coupled microstrips (kA = 0.635 mm, w = 1.0
mm, t = 0.3 mm, ¢, = 9.8).
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Fig. 9. Propagation constant and impedance as a function of frequency for
awire (h =3 mm, ¢ = 0.75 mm, ¢, =4,0 = o0, H = 4.5 mm).

and ¢ = 0.3 mm. Fig. 8 presents the dispersion curves for
the propagation constants and impedances of the even and
odd mode. The statical values obtained with our capacitance
program are also indicated.

B. Wire Transmission Lines

The inset of Fig. 9 represents a wire with radius a = 0.75
mm approximated by an hexagon with the same area. The
substrate has a thickness A = 3 mm and a relative dielectric
constant €, = 4. H is the distance between the center of the
wire and the ground plane. In the simulations we used only
two divisions on each side of the hexagon.

First we consider a perfectly conducting wire above the
substrate with = 4.5 mm. Fig. 9 shows the propagation
constant and impedance dispersion curves compared with
results obtained in [6] for round wires. Remark that the sudden
increase of the impedance found in [6] is confirmed here.
Slight differences in both impedance curves are probably due
to fact that in [6] the power propagated in the source layer
is determined in the space domain with a crude integration
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Fig. 10. Transversal electric field distribution around the wire of Fig. 9 with
o =oc0 and H = 4.5 mm at a frequency of 2 GHz.
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Fig. 11. Real and imaginary part of the propagation constant as a function
of frequency for the wire of Fig. 9 with & = 100 kS/m and A = 3 mm for
two different values of the loss tangent of the substrate.
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Fig. 12. Real and imaginary part of the impedance as a function of frequency
for the wire of Fig. 9 with ¢ = 100 kS/m and H = 3 mm for two different
values of the loss tangent of the substrate.

scheme. Fig. 10 shows an arrowplot of the transversal electric
field components at a frequency of 2 GHz.
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Fig. 13. Real and imaginary part of the propagation constant as a function
of the conductivity o for the wire of Fig. 9 with H = 3 mm.

Now we take H = 3 mm such that the wire is semi burried
in the substrate. Figs. 11 and 12 show the complex propagation
constants and impedances as a function of frequency when
the wire has a conductivity o = 100 kS/m for two different
values of the loss tangent of the substrate (tgé = 0. and
tgd = 0.001). Note that the curves for the real part of both
B and Z practically coincide for the two values of tgé. The
imaginary part of Z shows the effect of losses in the conductor
at low frequencies and the effect of losses in the substrate at
high frequencies. Fig. 13 shows the propagation constant as
a function of the conductivity o of the wire for a frequency
f =10 GHz and f = 15 GHz and a lossless substrate.
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