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Rigorous Analysis of the Propagation Characteristics

of General Lossless and Lossy Multiconductor

Transmission Lines in Multilayered “Media
Frank Olyslager, Student Member, IEEE, Daniel De Zutter, and Krist Blomme, Student Member, IEEE

Abstract— The frequency dependent propagation character-

istics of Iossless and lossy open coupled polygonal conductor

transmission lines in a multilayered medium are determined

based on a rigorous full-wave analysis. A boundary integral
equation technique is used in conjunction with the method of

moments. Losses in conductors and layers are included in an

exact way without making use of a perturbation approach.
Dispersion curves for the complex propagation constants and

impedances are presented for a number of relevant examples and,

where possible, compared with published data.

I. INTRODUCTION

T HE STRUCTURES analyzed in this paper consist of

coupled polygonal waveguides in a multilayered medium.

Though the theory is valid from pure dielectric to perfect

conducting waveguides we will restrict ourselves to polygonal

conductors. These conductors can be perfectly conducting or

have a finite conductivity. As no simplifying assumptions have

been introduced, our approach allows a rigorous study of skin

effect phenomena.

Polygonal transmission lines have already been studied by

a number of authors, however mostly restricted to the quasi-

TEM limit. In [1] a quasi-TEM analysis is presented of coupled

polygonal conductors in a layered medium. The authors use the

Green’s function of free space and the layered medium is taken

into account by polarization charges at the layer interfaces. In

[2] the same authors use a perturbation theory to include losses

in layers and conductors. In [3] the same kind of structures

were ana~ysed in the quasi-TEM limit, however by means of

the Green’s function of the layered medium. Recently in [4] a

complex image technique was proposed to handle the layered

medium.

In [5] the rigorous full-wave analysis of open polygonal

conductors is limited to the case of perfectly conducting

conductors. The analysis is based on a mixed potential integral

equation technique in conjunction with the Green’s dyadic of

the layered medium. The authors study the behavior of the

propagation constants of the first and higher order modes in

the bound and leaky regime. The propagation constants and

impedances of perfectly conducting wire transmission lines

in multilayered media were determined in [6], Some authors
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Fig. 1. Geometry of a generat multiconductor transmission line.

have investigated the influence of finite thickness or losses of

microstrip structures with perturbation techniques, for example

in [7], [8].

To the authors knowledge this paper is the first rigorous

analysis for both the propagation constants and impedance lm.a-

trix of coupled polygonal transmission lines including losses

and without any perturbation approach.

The general outline of the theory is developed for conduct-

ors with arbitrary cross-section. In the detailed calculations

however, it becomes necessary to assume polygonal cross-

sections. This assumption leads to considerable simplifications

as a number of integrations can be carried out analytically.

The eigenmodes propagated along the structures under study

are determined with a boundary integral equation technique.

This integral equation is an extension of the equation used in

[6]. The sources of the eigenmodes are the tangential electric

and magnetic field components at the conductor boundaries.

The integral equation is solved with the method of Galerkin.

The eigenvalues of this integral equation are the propagation

constants and the eigenvectors yield the modal fields. These

modal fields are used to calculate the propagated power. From

the propagated power we determine the impedance matrix.

II. GEOMETRY OF THE PROBLEM

Fig. 1 shows the geometry of the analyzed structures, There

are L layers and we will use the subscript ‘i’ (i = 1, ..., L)

to refer to the ith layer. Each layer consists of homogeneous

and isotropic material characterised by an arbitrary relative

complex permittivit y G); and complex permeability vr.,i.
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A total number of C conductors are embedded in the layered

medium and the subscript ‘j’ (j = 1, ., ., C) refers to the

jth conductor. Because a conductor can be located in more

than one layer we use the notation L’i to indicate the total

number of conductor parts in layer i while the subscript ‘ Zj’

(j= 1, . . . . Ci) refers to the jth conductor part in layer i.

Each conductor j consists of homogeneous and isotropic

material characterized by an arbitrary relative permittivity e~,j

and permeability Pr,j. The permittivity is a complex number

and contains the conductivity a of the conductor. In many

cases one will deal with good conductors so that the real part

of G- can be neglected and that ET = CJ/jWeo. The case of

perfectly conducting conductors is found by making er infinite.

The boundary of conductor j is denoted by cj. Note that

ciJ is the boundary of conductor part j in layer i. nj is the

external normal to Cj and Tj (y, .z) is the position vector in the

(y, z)-plane of a point on cj.

III. CONSTRUCTION OF THE INTEGRAL EQUATION

A. Introduction

The common time and longitudinal dependence eJ’(’’’@J@J

in all field components, with w the pulsation and /? the

propagation constant, is omitted. We use the longitudinal field
components EZ (~) and Ha(r), with r = yuv + ZUZ, as basis

from which the other field components can be generated. The

sources which build up these longitudinal field components

are the tangential fields nj x ll(rj ) and nj x ~(rj ) at

the boundaries of the conductors. These tangential fields

consist of longitudinal contributions E.,j (~j ) and H.,j (rj)

along the conductors and transversal contributions Et,j (rj )

and Ht,j (rj ) in the cross-section of the structure. The four

functions Ez,j (T=j), Hz,j (rj ), Et,j (Tj) and Ht,j (rj) along all

the conductor boundaries are the unknowns of the eigenmode

problem and will be referred to as the sources in the sequel.

We will make a distinction between the so-called internal

regions inside the conductors and the so-called external regions

outside the conductors, The fields in both the external and

internal regions are expressed as a function of the sources at

the conductor boundaries. The fields in the external regions are

the sum of incoming fields and scattered fields. The incoming

fields are defined to be the fields generated by the sources if

the layer, in which these sources are located, fills up whole

space. These incoming fields however will reflect at the layer

interfaces and penetrate into the other layers. In this way the

scattered fields are generated. The incoming fields exist only

in the layer of the sources while the scattered fields exist in

all layers. The same partitioning of the fields was used in [6].

The internal and external regions are connected by imposing

appropriate bounda~ conditions between the field expressions

in both regions. This results in the final integral equation.

B. Internal Regions

Consider the internal region of conductor j shown in

Fig. 2(a). From elementary electromagnetic it is known that

the longitudinal fields in a homogeneous space are solution to

the Helmholtz equation. From this fact, using Green’s identity,

it can be shown that the total longitudinal fields inside the

nj

‘r, i ‘r, i

(a) (b)

Fig. 2. Internal region of conductor j (Fig. 2(a)) and external region in
layer i around conductor part Zj (Fig. 2(b)).

conductor can be expressed as a contour integral along the

Because these total fields are analogous to the external incom-

ing fields (2) discussed in the next subsection we explicitly

introduced the superscript ‘in’ in (1). This will simplify

the subsequent discussion. Gj (TIT’) is the two-dimensional

Green’s function of homogeneous space filled with the ma-

terial of the conductor. From the knowledge of Ez)j, H.,j and

their normal derivatives at the boundary Cj we can calculate

Ez,j and Hz, ~ everywhere inside the conductor.

C. External Regions

Now consider layer z in which some conductor parts are

located (Fig. 2(b)). First we concentrate on conductor part Zj.

The incoming fields generated in layer z by this conductor

part are given by

-%, (r) =

(2)

Gi (TIT’) now represents the Green’s function corresponding

to layer i. Remark that the signs in front of the integrals in

(2) and (1) are different because the normal vector n is now

pointing inward relative to the external region. The incoming

fields will generate scattered fields in all layers of the structure.

Now we can write down the total fields in each layer i:

j=l j=l

J’=1 j=]
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where E&(~) andHj~j(r) arethescattered fields generatedin

the layered structure by all the conductor parts of conductor

j, If there are no conductor parts in layer i, the total fields

in this layer will only consist of scattered fields due to the

conductors in the other layers.

D. Boundary Conditions and Unknown Sources

In the previous two sections it was demonstrated that it is

sufficient to know the longitudinal field components and their

normal derivatives at the conductor boundaries to know the

electromagnetic fields everywhere. This suggests the use of

~z(~j),~.(~j),~~~(~j)/dn and 6’llZ(Tj)/dn as basic un-
knowns in the eigenmode problem. However ilEz (rj)/th and

dll~(rj )/ih axe not suitable because they are not continuous

and take different values at the inside and outside of the

conductor boundaries.

To solve this problem we closely examine the continuity

relations at the conductor boundaries. A first set of boundary

conditions are the continuity of the longitudinal field com-

ponents Ez and Hz. Secondly we have the continuity of

the tangential field components Et and Ht in the transverse

(y. z)-plane.

In the local tangent coordinate system to curve c of Fig.

2(a) we can express Et and Ht as a function of derivatives

of E% and Hz:

j,~ 8EZ + jW/46’HZ
Et=–7X

72 an

(4)

with Y2 = W=ep – pz.

Equation (4), which can be derived from Maxwell’s equa-

tions, gives us expressions for the normal derivatives as a

function of continuous quantities. Note in this respect that

the continuity of Ez and Hz at the boundaries implies the

continuity of their tangential derivatives. Consequently we will

use Et, Ht, 8EZ /at and 8H~ /at as basic utinowns instead of

6’E./&z and 8H./h. If the functions Ez and Hz are known

at the boundaries then i3Ez /i3t and 8HZ /at are also known by

derivation along the boundary. Hence no new unknowns are

introduced by these derivatives and the final set of unknown

functions is E., Hz, Et and Ht at the boundaries.

Replacing the normal derivatives of the fields in (l), using

(4). results in

and an analogous replacement can be performed in (2).

E. Final Set of Integral Equations

The integral equations are constructed by connecting the

internal and external regions. This means that we impose the

continuity relations between the total fields at the outside and

the total fields at the inside of the conductor boundaries. As

explained in the previous subsection, it is sufficient to impose

the continuity of the longitudinal components E. and H. and

the tangential transversal components Et and Ht:

= ljm E~o(r)
r<rto

1@~H$i,(T)+~H$>(r)
r>r%o j=l j=l

r>r,o lj=~ J=l J
= ljm H&(r) io=l, . . ..cz i=l, . . ..L.

r<r%o

(6)

where rio is a position vector located on the oth conductor

part in layer i. The subscript ‘o’ in the incoming fields at

the right hand side refers to the conductor to which conductor

part ‘i.’ belongs. The limiting operation at the left hand side is

performed from the external regio~ to the conductor boundhry

as indicated by the notation ‘ r>r,o’ and the operation at

the right hand side is performed from the internal region is
+

indicated by the notation ‘r<rio.’ In the last two equations of

(6) the tangential transversal fields (index t) are determined
from their longitudinal counterparts (index z) by applying

(4). The integral equations (6) consist of four continuity

relations between Ez (r) and Hz(r) in four unknown functions

J% (rj), Ha (rj ), -&(rj) and Ht (rj). These unknowns are de-
fined over the total boundary of all conductors j, j = 1,”””, C.

In the case of a perfect conductor we have that Ez (rj ) =
Et (rj ) = O, or that only two unknown functions Hz (rj ) and
Ht (rj ) do not vanish at the perfectly conducting boundaries.

At these boundaries we can only impose two conditions:

E. (r~rj ) = Et(r;rj) = O. This means that (6) reduces

to a set of two equations with two unknown functions.

IV. SOLUTION OF THE INTEGRAL EQUATION

A. Basis Functions and Test Functions

The integral equation (6) is solved with Galerkin’s method.

The basis and test functions in the moment method of Galerkin
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are chosen in a natural way. We first concentrate on the basis

functions. For Hz we use a piecewise linear representation and

for Ht we use a piecewise constant representation. If we look

at the first equation of (5) we see a term proportional to Ht

and a term proportional to i3Hz /i?t. When Hz is piecewise

linear, 8Hz/iX will be piecewise constanc so it would not

make much sense to use a higher order representation for Ht.

In the case of a perfect conductor Ht and Hz are equal to

the surface currents on the conductor. In [5] the same choice

of basis functions is used for the representation of the surface

current. By analogy we use a piecewise linear representation

for Ez and a piecewise constant representation for Et.

As test functions in the method of Galerkin we use piece-

wise constant functions for Em and Hz and piecewise linear

functions for Et and Ht. This choice of basis and test functions

results in a very elegant and consistent development of the

theory. We will come back to this point in the sequel.

The boundary of each conductor is divided into a number of

segments with not necessary equal length. For the piecewise

constant representation we use pulse functions p(~) where ~

is the arc length:

p(r) = ; 0<7 <($. (7)

Overlapping triangular functions t(~) (see Fig. 4(a)) are used

for the piecewise linear representation:

t(~) =l+; –61<TS0

=1–1
6’2

05T5& (8)

The total number of segments on all conductor boundaries

is equal to iV. p~(r) -r E [0, ti~] (k = 1, ..., N) denotes the

kth pulse function and t~(-r)~ c [–61,~, 62,~] (k = 1,..., N)

denotes the kth triangular function.

The segment on a conductor corresponding to a specific

basis function will be called excitation segment. A segment

corresponding to a specific test function will be called ob-

servation segment. So each segment is sometimes seen as an

excitation segment and sometimes as an observation segment

depending on the context.

[E, Ez]~l . . . [EtEz]~~

[HtEz]~l . . . [H,Ez]~~

B. Discrete Eigenvalue Problem

If the total number of segments on all conductors is equal

to N, our integral equation is discretised in a set of 4N

homogeneous linear equations, each corresponding to a test

function, with 4N unknown amplitudes of the basis functions

shown in (9) at the bottom of the page. Ez, k, Hz,k, Et,k

and Ht,k(k = 1, . . . , N) are the unknown amplitudes of

the basis functions in the representation of Ez, Hz, Et and

Ht. [XY]~t (k,l = 1,... ,N; X,Y = Ez, Hz, Et, Ht) is the

X boundary condition tested at the kth observation segment

and generated by the basis function of the field component Y at

the lth excitation segment. So [XY] ~1 contains an integration

over the lth excitation segment and over the kth observation

segment. Comparison of (6) and (9) shows that [XY] M is

formed by the difference of an internal and external part and

that this external part consists of an incoming and scattered

contribution.

Each coefficient [XY]~l in (9) is a nonlinear function of the

propagation constant ,6. (9) will only have nontrival solutions

if the determinant of the system matrix vanishes. This determi-

nant is a function of/3 and will become zero for some discrete

values of /3. These values correspond to the propagation

constants of the eigenmodes and the corresponding solutions

or eigenvectors of (9) are the eigenmode field components at

the conductor boundaries.

C. The System Matrix

1. Space Domain: In this section we will give explicit

expressions for the excitation and observation integration

appearing in each coefficient of the system matrix. First the

observation integration over the test function is examined

followed by the excitation integration.

Each coefficient of type [EZY] kl, with Y = Em, Et, Ha or

Ht, contains a test integration of Ez over the kth segment.

This integration takes the form:

where

the lth

. . .

[EzHt]~l

[HzHt]ll

. . .

[EtH,]~l

[HtHt]ll

. .

[HtH,]~l

/

~k

~ Pk(~) -Z(T(V)) dv (lo)

Ez (r) is the longitudinal electric field generated by

basis function of field component Y. E. (r-) can be an

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

[EzHt]~~

[HxHt]uv

[HxHt]~N
[EiHt]lN

[E,H,]~~

[H, H,]l~

[HtHt]~~

Ez,l

E.,N

Hz,l

~z,N

Et,l

Et,N

Ht,l

Ht,~

——

o

0

0

0

0

0

0

0

(9)
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incoming or scattered field. The expression for [IIZY] ~t is

analogous to (10).

[E,Y]~l on the other hand contains an integration of the

form:

!

L$h,~
tk(v) Et(r-(v)) dv. (11)

–ak,~

The transversal tangential field Et(r) has to be expressed in

function of the basic field quantities using (4):

[HtY]~~ is again analogous to (12).

[XEZ]~l, with X = Em, Et, llZ or Ift, contains an integra-

tion over the .Jth basis function of the representation of Ez.

The integrations associated with [XEZ]~l are

or:

as can be verified directly from (5). Analogous expressions

hold for [XHZ]~l. From (5) one sees that [XEt]kl has only

a magnetic contribution:

And finally [XH~]~t isagain analogous to (15).

2. Spectral Domain: The Hankel function in the Green’s

function G(+’) = j/421$) (~lr’ – T-’1) and her derivatives

appearing in ( 13)–( 15) make the basis function integration

difficult. This problem can be solved if we spatially Fourier

transform the expressions ( 13)–(15) and calculate the spec-

tral longitudinal incoming fields. Interchanging the Fourier

transform with the excitation integration and possible normal

derivatives (appearing in (13)) leads us to the Fourier trans-

form of the Green’s function. This Fourier transform is given

by ([9] page 360):

1

-/

+Cc
G(rlr’)e~~”y dy

2T _m

The y-direction is indicated on Fig. 1. This spectral Green’s

fimction allows us to perform the integration over the basis

function analytically if the excitation segment is a straight line.

The spectral incoming fields are also needed in the calculation

of the scattered fields.

The space domain fields appearing in the test integrations

(10) and (12) are found by inverse Fourier transforming

the incoming or scattered spectral fields. We will however

first bring the inverse Fourier transform outside the test

function integration by interchanging both integrations. This

makes it possible to perform also the test function integration

analytically if the observation segment is a straight line

‘A

1-
111

{

— — — —
11

— — — — I—

1 obwvalion
segment

e~~itatim
segmem

Y

(a) (b)

Fig. 3. Observation and excitation segment with overlapping z coordkates in
the (g, z) coordinate system (Fig. 3(a)) and without overlapping 2 coordinates
in the new (J, Z) coordinate system (Fig. 3(b)).

and only the final inverse Fourier tr-ansfonn remains to be

integrated numerically. Remark that we use this spectral

technique even for internal regions with finite dimensions.

D. Incoming Coejjicients

Even after applying the spectral domain technique the

basis and test integrations can become pretty complicated.

This is due to the absolute value of Iz – z’ I appearing in

the spectral Green’s function (16). Consider a typical basis

function integration over an excitation segment. If we need

the spectral incoming fields at a -z coordinate above or under

the excitation segment there is no problem because (z – z’) has

a fixed sign. However if we need the spectral incoming field

at a z coordinate at the height of the excitation segment we

have to divide the basis function integration in two parts: one

with Iz–z’l = (z–z’) and one with I.z-z’l = –(z–z’). At

the observation segment we integrate over z. This means that

if the observation and excitation segment have overlapping .z-

coordinates, as shown in Fig. 3(a), we have to divide both

integrations in several parts. In region I (z — z’) is positive,

in region III (z – z’) is negative and in region II (Z – z’) can

have both signs and the basis and test integrations are coupled.

However, this problem can be solved in an elegant way.

The incoming fields are fields generated in a homogeneous

space of infinite extend, so there is no preferential spectral

transformation direction imposed by the layered medium. If

we use the new coordinate system (y, .2) of Fig. 3(b) and if we

Fourier transform along the new y direction this partitiorking

in zones is no longer necessmy because (2 – i?) is always

positive. A problem case occurs when the basis and test

function coincide i.e. the so-called self-patch contribution. This

problem can only be solved for polygonal waveguides in which

case the ~ axes is taken to be along the straight segment and

(~ - E’) is equal to zero. In the further calculation we will

always use the standard (y, z) coordinate system, but for the

incoming coefficients this system is assumed to be the (j, 2)

coordinate system.

E. Scattered Coejjicients

As will be shown in the next section the spectral longitudinal

incoming fields consist of terms of the following general fcmn:

‘Y(f%j~) = e+(ky)e+rz

H~(ky, z) = h+(ky)e+rz. (17)
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(a)

(b) (c)

Fig. 4. Polygonal conductor (Fig. 4(a)) with its boundary divided in seg-
merits. Notations tohandle pulse functions (Fig. 4(b)) and triangular functions
(Fig. 4(c)).

In the spectral domain the layered medium can be seen as

a TE and TM cascade of transmission lines. The incoming

fields (17), after decomposition in TE and TM components, are

represented as voltage and current sources in these cascades.

Solution of the cascades with a matrix formalism described in

[10] results in the TE and TM components of the scattered

fields. After combination of both components, the spectral

longitudinal scattered fields in each layer can be written in

the following general form:

E~c(ky, 2) = E+(ky)erz + E-(kg)e-rz

Hj’(kg, z) = L+(kv)er’ + L-(kg)e-rz (18)

The solution of the cascades, i.e. the relation between

Z*(kY), k+(kv) and e+(ky), h+(kg), has to be determined

only once for each excitation-observation layer combination

and not for each excition-observation segment combination.

This means that the calculation time for scattered coefficients

is only slightly higher than for incoming coefficients.

V. BASIS AND TEST FUNCTION INTEGRATIONS

In the further development of the theory it is necessary

to assume conductors with polygonal cross-section. Fig. 4(a)

represents a polygonal conductor with its boundary divided in

segments. Comers of the boundary are always at the edges of

segments. Fig. 4(b) shows the notations used to handle pulse

basis and test functions. The triangular function case is shown

in Fig. 4(c). Two angles al and a2 are introduced because a

triangular segment can be across a comer of a conductor.

We start with the basis function integration, in other words

we determine the spectral longitudinal incoming fields gen-

erated by each basis function. This means that the Fourier

transfomm in ( 13)–( 15) are calculated. We will use the con-

ditions z > z’ respectively z < .z’, by this we mean that z

must be taken above respectively under all the z’ coordinates

of the excitation segment.

We start with the contribution of a basis function for Et

to the longitudinal incoming magnetic field lY$(kY, z). This

is the Fourier transform of (15). To simplify notations the

subscript ‘ 1‘, referring to a specific basis function, is omitted.

With the spectral Green’s function (16) and the pulse function

(7) one finds, when z > z!:

.2–rz6
@(~y,2) = –~”{ e J eik”y’erz’ dr (19)

47rrpw6 (j

with y’ = go + T cos a and z’ = .zO+ T sin a. Integrating (19)

yields:

with mo = jkYyo + r.zo and t = jkY cos a + r sin ct. The case

when z < z’ is analogous and is left to the reader.

Now we concentrate on the E. basis function contribution

(13) to E$(kg, z). In this case we need the normal derivative

of the spectral Green’s function. For this we use the following

relations between the (t, n) and (y, z) derivatives:

a 6’ a

f%
= sin~— —cos Q—

ay 82

a a.a

z ‘cOsaa+slnaz”

For z > z’ the Fourier transform of the normal

G is equal to

(21)

derivative of

where w = jkv sin Q – I’ cos a. E$(kti, z) with (22) and (8)

is given by

If we integrate by parts we finally find:

E~(kv, z) = –
[

e–rz+m” wl(e–$l*l – 1

4nr 61t:

+
w2(eM2 – 1)

(fZt; 1
+?–:, (24)

where t1 and WI respectively t z and W2 correspond to t and w

with a replaced by al respectively a2. Note that for a straight

excitation segment, without a comer at T = O,t1 and WI are

respectively equal to t2and W2. This means that in this case

the last two terms in (24) cancel each other out. The z < z’

case is again left to the reader.

The calculation of the other contributions to H~(kg, z) and

E$(kv, .z) are analogous.

The test function integration is needed to apply Galerkin’s

procedure. The test integration is completely analogous to

the procedure applied for the basis function integration after

interchanging the test integration and the inverse Fourier

transformation. For this reason we will not present an explicit

calculation of this integration.
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VI. INVERSE FOURIER TRANSFORMATION

The spectral integration is performed in the classical way

as described for example in [11]. For kg c [– k., k.] we

use simple Gauss quadrature integration formulas along a

suitable complex integration path. The asymptotic part of the

integration, i.e. kv ~ [kC, +co[ and kv E] – co, –kC], allows

a special treatment. k. is taken high enough to ensure that
17 can be approximated by Ikv 1. We will concentrate on the

positive part, kg c [k., +cm[, of the asymptotic integration in

which r = k~.

From (20) and (24) it can be seen that the scattered

longitudinal incoming fields contain only terms proportional

to

e
—akv

k: Re(a) >0. (25)

Note that the last two terms in (24) cancel out when we replace
r by kv. The common spectral asymptotic character (25) of

all spectral longitudinal incoming fields is due to the special

choice of the basis functions. Note that one factor 1/kg is due

to the spectral Green’s function and one is due to the basis

function integration. The integration over the test function will

introduce an extra factor 1/kv. The fact that the test function

integration always results in an extra factor 1/kv is due to the

special choice of the test functions.

First we concentrate on the asymptotic part of the incoming

coefficients [XY]fi’”’ of the system matrix. From the above

it is clear that these coefficients are the sum of terms of the

following form:

/

+ca e–aku

[xY];’as = c ~dkv = ~Es(akC) Re(a) 20.
kc Y c

(26)

With Es(x) the third order exponential integral ([9], p. 228).

The scattered coefficients [XY]~I”s also contain the l/kj

spectral character due to basis and test function integration.

However due to the solution of the layered medium an extra

function $ (kg) is introduced which describes the propagation

and reflection in the layers. So [XY] fi’as can be written as a

sum of terms of the following form:

This integral can be evaluated with Gauss–Laguerre quadra-

ture.

VII. IMPEDANCES

The complete circuit model requires the impedance matrix

associated with the eigenmodi. In [12] this impedance matrix

is calculated from the mode current in each conductor, the

power propagated by each eigenmode and the cross powers

between the eigenmodi.

It was not necessary to make any assumptions about the

material parameters of the conductors for the calculation

of the propagation constant. In order to give a meaningful

interpretation to the total longitudinal current however, it is

necessary to assume that the displacement current is negligible

‘22%=-+3’

o 20 40 60 80 100

frequency (GHz)

Fig. 5. Propagation constant and impedance as a function of frequency for
a thick microstrip (h = 0.635 mm, and w = 3.0 mm, t = 0.3 mm,
~, = 9.8, u = M)).

compared to the conduction current inside the conductors. The

sufficiently high conductivity makes it also possible to restrict

the power calculation to the layers and neglect the power

propagated in the conductors.

The total longitudinal current Ij on conductor j (J’ =

1,... , C) is calculated from the contour integral of the

transversal tangential magnetic field llt around the conductor

surface because the displacement current in the conductor is

neglected.

Suppose we want to calculate the cross-power J’fg prop-

agated between mode ~ and mode g. This requires an in-

tegration of the z component of Poynting’s vector over the

cross-section of the waveguide. Using Parceval’s theorem we

can calculate Pf ~ in the spectral domain:

Pfg =X J‘m[Ey,f(ky,Z)~;,g(hZ)
–Jzf (kY> ~) %g(kY) ~)1d~d~Y. (28)

For source-less layers, i.e., layers without conductors, the

z-integration is calculated analytically.

In source layers things are more complicated. In principle it

is possible to perform the z-integration, even in source layers,

analytically. However this analytical integration results in very

tedious expressions which would require enormous amounts of

time to evaluate. Therefore we opted for a Gaussian quadramre

numerical integration to perform the z- integration.

VIII. NUMERICAL EXAMPLES

A. Microstrip Configuration

As first example we consider a thick microstrip (see inset

of Fig. 5) with rectangular or trapezoidal cross-section on a

substrate with thickness h = 0.635 mm and relative dielectric

constant C. = 9.8. The thickness t is one tenth of the top

width w = 3.0 mm of the strip.

Fig. 5 presents the propagation characteristics of a perfectly

conducting strip with rectangular (~ = 90° ) and trape-

zoidal (~ = 45° ) cross-section. The normalized propagation
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Fig. 6. Real and imaginary part of the propagation constaut as a function of
frequency for the strip of Fig. 5 with o = 100 kS/m.
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Fig. 7. Real and imaginary part of the impedance as a function of frequency
of the strip of Fig. 5 with u = 100 kS/m.

constants are found to be in excellent agreement with the

results of Michalski and Zheng in [5]. We verified the low-

frequency limits of the impedances with results obtained by

our capacitance program described in [3].

In Figs. 6 and 7 the complex propagation constants’ re-

spective complex impedances are shown when the strip has

a conductivity o = 100 kS/m. This corresponds to a bad

conductor worser than iron. As expected the attenuation con-

stant (= –Im(~) ) decreases with increasing frequency as a

result of the skin effect. At low frequencies the real part of

the propagation constant shows a small dip (see enlargement

on Fig. 6). This increase of Re(@) with decreasing frequency

is a result of the fact that the fields start to penetrate deep

inside the strip with high complex permittivity ~. = O/jweo.

Indeed, at 1 GHz the skin depth is 50.3 ~m and at 100 MHz

it has already increased to 159 ~m which corresponds to

half the strip thickness. In this frequency range perturbation

techniques based on the skin effect are not applicable for

this example. Remark also that Re((3) becomes almost equal

to the propagation constant in the lossless case (Fig. 5) for

frequencies above 8 GHz. The unbound character of Im(@ /kO

at ~ = O finds its origin in the factor ~ from k. = 2n $-.

The dispersion curves (Fig. 7) for the impedance show the

same properties as Fig. 6.

We have divided the strip of Fig. 5 in two smaller perfectly

conducting strips (see inset of Fig. 8) with w = 1 mm

z (Gt)675

0 20 40 60 80 100
frequency (GHz)

Fig. 8. Propagation constant and impedance as a function of frequency for
the even and odd mode of two coupled microstrips (h = 0.635 mm, w = 1.0
mm, t = 0.3 mm, G. = 9.8).
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Fig. 9. Propagation constant and impedance as a function of frequency for
awire(h =3mm, a=0.75 mm, 6.=4, u=m, H=4.5 mm).

and t = 0.3 mm. Fig. 8 presents the dispersion curves for

the propagation constants and impedances of the even and

odd mode. The statical values obtained with our capacitance

program are also indicated.

B. Wire Transmission Lines

The inset of Fig. 9 represents a wire with radius a = 0.75

mm approximated by an hexagon with the same area. The

substrate has a thickness h = 3 mm and a relative dielectric

constant q- = 4. II is the distance between the center of the

wire and the ground plane. In the simulations we used only

two divisions on each side of the hexagon.

First we consider a perfectly conducting wire above the

substrate with H = 4.5 mm. Fig. 9 shows the propagation

constant and impedance dispersion curves compared with

results obtained in [6] for round wires. Remark that the sudden

increase of the impedance found in [6] is confirmed here.

Slight differences in both impedance curves are probably due

to fact that in [6] the power propagated in the source layer

is determined in the space domain with a crude integration
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Fig. 10. Transversal electric field distribution around the wire of Fig. 9 with
u = co and H = 4.5 mm at a frequency of 2 GHz.
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Fig. 11. Real and imaginary part of the propagation constant as a function
of frequency for the wire of Fig. 9 with u = 100 kS/m and H = 3 mm for
two different vafues of the loss tangent of the substrate.
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Fig. 12. Real and imaginary part of the impedance as a function of frequency
for the wire of Fig. 9 with o = 100 kS/m and H = 3 mm for two different
vafues of the loss tangent of the substrate.

scheme. Fig. 10 shows an arrowplot of the transversal electric

field components at a frequency of 2 GHz.
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Fig. 13. Real and’ imaginary part of the propagation constant as a function
of the conductivity u for the wire of Fig. 9 with H = 3 mm.

Now we take H = 3 mm such that the wire is semi hurried

in the substrate. Figs. 11 and 12 show the complex propagation

constants and impedances as a function of frequency when

the wire has a conductivity o = 100 Id$lrn for two different

values of the loss tangent of the substrate (tg 6 = O. and

tg 8 = 0.001). Note that the curves for the real part of both

/3 and 2 practically coincide for the two values of tg 8. The

imaginary part of Z shows the effect of losses in the conductor

at low frequencies and the effect of losses in the substrate at

high frequencies. Fig. 13 shows the propagation constant as

a function of the conductivity CTof the wire for a frequency

j = 10 GHz and j’ = 15 GHz and a lossless substrate.
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